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In this supplementary document, we include:

• Proofs of the continuous normal theorems given in the paper.

• A detailed derivation of the polynomial corresponding to the
continuous force for linear trajectories.

• A derivation of stability conditions of 1D particle-on-plane
contact for Symplectic Euler and continuous penalty forces.

A Time-Varying Contact Normals for VF and
EE Pairs

Theorem 1: Continuous Normal Theorem for a Deforming Tri-
angle. Given the start and end positions of the vertices of a triangle
during the interval [0, 1], whose positions are linearly interpolated
in the interval with respect to the time variable, t. The unit normal
vector, ~nT (t), of the triangle, at time t, is given by the equation:

~nT (t) =
~n0 B

2
0(t) + ~n1 B

2
1(t) + ~n2 B

2
2(t)

L(t)
, (1)

where

• B2
i (t) = 2!

i!(2−i)!
ti (1− t)2−i.

• a0, a1, b0, b1, c0, c1 are the start and end positions of the
three vertices of the deforming triangle, respectively.

• ~va = a1 − a0, ~vb = b1 − b0, and ~vc = c1 − c0.

• ~n0 = (b0 − a0) × (c0 − a0), ~n2 = (b1 − a1) × (c1 − a1),
~n1 = ~n0+~n2−(~vb−~va)×(~vc−~va)

2
, respectively.

• L0 = (~nT
0 ~n0), L1 = (~nT

0 ~n1), L2 =
2 (~nT

1 ~n1)+(~nT
0 ~n2)

3
,

L3 = (~nT
1 ~n2), L4 = (~nT

2 ~n2), respectively.

• B4
i (t) = 4!

i!(4−i)!
ti (1− t)4−i.

• L(t) =

√
(L0 L1 . . . L4) · (B4

0(t) B4
1(t) . . . B4

4(t))T .

Proof. We define the following terms: ~at = ~a0 + ~va t, ~bt = ~b0 +
~vb t, and ~ct = ~c0 + ~vc t. The normal vector of triangle4atbtct is
given as:

~mt = (~bt − ~at)× (~ct − ~at)
= [(b0 − a0) + (~vb − ~va) t]× [(c0 − a0) + (~vc − ~va) t]

= (b0 − a0)× (c0 − a0) + (~vb − ~va)× (c0 − a0) t+

(b0 − a0)× (~vc − ~va) t+

(~vb − ~va)× (~vc − ~va) t2. (2)
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Let ~n0 and ~n2 be the normal vectors of triangle 4a0b0c0 and
4a1b1c1, respectively. Then:

~n0 = (b0 − a0)× (c0 − a0), (3)
~n2 = (b1 − a1)× (c1 − a1)

= (b0 + ~vb − a0 − ~va)× (c0 + ~vc − a0 − ~va)

= (b0 − a0)× (c0 − a0) + (~vb − ~va)× (c0 − a0) +

(b0 − a0)× (~vc − ~va) + (~vb − ~va)× (~vc − ~va). (4)

Based on the above equations, we obtain:

~n2 − ~n0 = (~vb − ~va)× (c0 − a0) + (b0 − a0)× (~vc − ~va) +

(~vb − ~va)× (~vc − ~va). (5)

We define:
~ω = (~vb − ~va)× (~vc − ~va). (6)

Then from equations (5) and (6):

~n2−~n0−~ω = (~vb−~va)× (c0−a0)+(b0−a0)× (~vc−~va) (7)

By plugging the equations (3), (6), and (7) into equation (2), ~mt

can be represented as:

~mt = ~n0 + (~n2 − ~n0 − ~ω) t+ ~ω t2

= ~n0 (1− t)2 +
~n0 + ~n2 − ~ω

2
2 t (1− t) + ~n2 t

2

= ~n0 B
2
0(t) +

~n0 + ~n2 − ~ω
2

B2
1(t) + ~n2 B

2
2(t)

= ~n0 B
2
0(t) + ~n1 B

2
1(t) + ~n2 B

2
2(t). (8)

And:

||~mt||2 = ~mT
t ~mt

= (~nT
0 ~n0)B2

0(t)B2
0(t)

+ 2 (~nT
0 ~n1)B2

0(t)B2
1(t)

+ (~nT
1 ~n1)B2

1(t)B2
1(t)

+ 2 (~nT
0 ~n2)B2

0(t)B2
2(t)

+ (~nT
2 ~n2)B2

2(t)B2
2(t)

+ 2 (~nT
1 ~n2)B2

1(t)B2
2(t). (9)

Based on the properties of the Bernstein basis functions, we have:

B2
0(t)B2

0(t) = B4
0(t)

B2
0(t)B2

1(t) =
B4

1(t)

2

B2
1(t)B2

1(t) =
2B4

2(t)

3

B2
0(t)B2

2(t) =
B4

2(t)

6

B2
1(t)B2

2(t) =
B4

3(t)

2

B2
2(t)B2

2(t) = B4
4(t). (10)



By plugging the equation (10) into equation (9), we have:

||~mt||2 = (~nT
0 ~n0)B4

0(t) + (~nT
0 ~n1)B4

1(t)

+
2 (~nT

1 ~n1) + (~nT
0 ~n2)

3
B4

2(t)

+ (~nT
1 ~n2)B4

3(t) + (~nT
2 ~n2)B4

4(t)

= L(t)L(t). (11)

Based on equation (8) and (11), the normalized normal vector,
~nT (t), will be:

~nT (t) =
~mt

||~mt||

=
~n0 B

2
0(t) + ~n1 B

2
1(t) + ~n2 B

2
2(t)

L(t)
(12)

Theorem 2: Continuous Normal Theorem for Two Deforming
Edges. Given the start and end positions of the vertices of two
edges during the interval [0, 1], whose positions are linearly in-
terpolated in the interval with respect to the time variable, t, the
normal vector, ~nE(t), between the two edges, at time t, is given by
the equation:

~nE(t) =
~n′0 B

2
0(t) + ~n′1 B

2
1(t) + ~n′2 B

2
2(t)

L′(t)
, (13)

where

• B2
i (t) =

(
2
i

)
(1− t)i t2−i.

• a0, a1, b0, b1, c0, c1, d0, d1 are the start and end positions of
the four vertices of the two deforming edges, respectively.

• ~va = a1−a0, ~vb = b1−b0, ~vc = c1−c0, and ~vd = d1−d0.

• ~n′0 = (b0 − a0) × (c0 − d0), ~n′2 = (b1 − a1) × (c1 − d1),
~n′1 =

~n′
0+~n′

2−~ω′

2
, and ~ω′ = (~vb−~va)×(~vc−~vd), respectively.

• L′0 = (~n
′T
0 ~n′0), L′1 = (~n

′T
0 ~n′1), L′2 =

2 (~n
′T
1 ~n′

1)+(~n
′T
0 ~n′

2)

3
,

L′3 = (~n
′T
1 ~n′2), L′4 = (~n

′T
2 ~n′2), respectively.

• B4
i (t) = 4!

i!(4−i)!
ti (1− t)4−i.

• L′(t) =

√
(L′0 L

′
1 . . . L

′
4) · (B4

0(t) B4
1(t) . . . B4

4(t))T .

Proof. We define the following terms: ~at = ~a0 + ~va t, ~bt = ~b0 +

~vb t, ~ct = ~c0 + ~vc t, and ~dt = ~d0 + ~vd t. The normal vector of the
two edges defined by at, bt and ct, dt, respectively, is given as:

~m′t = (~bt − ~at)× (~ct − ~dt)

= [(b0 − a0) + (~vb − ~va) t]× [(c0 − d0) + (~vc − ~vd) t]

= (b0 − a0)× (c0 − d0) + (~vb − ~va)× (c0 − d0) t+

(b0 − a0)× (~vc − ~vd) t+

(~vb − ~va)× (~vc − ~vd) t2. (14)

Let ~n′0 and ~n′2 be the normal vectors of the two edges defined by
a0, b0, c0, d0 and a1, b1, c1, d1, respectively. Then:

~n′0 = (b0 − a0)× (c0 − d0), (15)
~n′2 = (b1 − a1)× (c1 − d1)

= (b0 + ~vb − a0 − ~va)× (c0 + ~vc − d0 − ~vd)

= (b0 − a0)× (c0 − d0) + (~vb − ~va)× (c0 − d0) +

(b0 − a0)× (~vc − ~vd) + (~vb − ~va)× (~vc − ~vd). (16)

Based on the above equations, we obtain:

~n′2 − ~n′0 = (~vb − ~va)× (c0 − d0) + (b0 − a0)× (~vc − ~vd) +

(~vb − ~va)× (~vc − ~vd). (17)

We define:
~ω′ = (~vb − ~va)× (~vc − ~vd). (18)

Then from equations (17) and (18):

~n′2−~n′0−~ω′ = (~vb−~va)×(c0−d0)+(b0−a0)×(~vc−~vd) (19)

By plugging the equations (15), (18), and (19) into equation (14),
~m′t can be represented as:

~m′t = ~n′0 + (~n′2 − ~n′0 − ~ω′) t+ ~ω′ t2

= ~n′0 (1− t)2 +
~n′0 + ~n′2 − ~ω′

2
2 t (1− t) + ~n′2 t

2

= ~n′0 B
2
0(t) +

~n′0 + ~n′2 − ~ω′

2
B2

1(t) + ~n′2 B
2
2(t)

= ~n′0 B
2
0(t) + ~n′1 B

2
1(t) + ~n′2 B

2
2(t) (20)

Analogous to the deduction in Theorem 1, the normalized normal
vector, ~nE(t), will be:

~nE(t) =
~m′t
||~m′t||

=
~n′0 B

2
0(t) + ~n′1 B

2
1(t) + ~n′2 B

2
2(t)√

(L′0 L
′
1 . . . L

′
4) · (B4

0(t) B4
1(t) . . . B4

4(t))T

=
~n′0 B

2
0(t) + ~n′1 B

2
1(t) + ~n′2 B

2
2(t)

L′(t)
(21)

B Computation of Continuous Penalty Force

In this section, we give the exact formula for the degree six poly-
nomial used for contact force computation. We use Corollary I to
derive this formula for VF contact force.

Coefficients of the Degree-Six Polynomial. For the evaluation of
the following equation:

~Ip = k

i<N∑
i=0

∫ tib

tia

(~nT )T (~p− wa ~a− wb
~b− wc ~c)~nT dt,

where t is the unknown. ~nT is approximated by a quadratic polyno-
mial (by replacing L(t) with Lk). ~p, ~a,~b, ~c are linear polynomials;
wa, wb, and wc are scalars.

From Theorem 1, let:

~nT = ât2 + b̂t+ ĉ,

~p− wa ~a− wb
~b− wc ~c = d̂t+ ê,

where:

â =
~n0 − 2~n1 + ~n2

Lk
,

b̂ =
2(~n1 − ~n0)

Lk
,

ĉ =
~n0

Lk
,

d̂ = p0 − waa0 − wbb0 − wcc0,

ê = (p1 − p0)− wa(a1 − a0)− wb(b1 − b0)− wc(c1 − c0).



The inner term of the integral corresponds to a degree-five polyno-
mial:

(~nT )T (~p−wa ~a−wb
~b−wc ~c)~nT = â′t5+b̂′t4+ĉ′t3+d̂′t2+ê′t+f̂ ′,

where:

â′ = (âT d̂) â,

b̂′ = (âT d̂) b̂+ (âT ê+ b̂T d̂) â,

ĉ′ = (âT d̂) ĉ+ (âT ê+ b̂T d̂) b̂+ (b̂T ê+ ĉT d̂) â,

d̂′ = (âT ê+ b̂T d̂) ĉ+ (b̂T ê+ ĉT d̂) b̂,

ê′ = (b̂T ê+ ĉT d̂) ĉ+ (ĉT ê) b̂,

f̂ ′ = (ĉT ê) ĉ.

Then we get the coefficients of the degree-six polynomial:∫ tib

tia

(~nT )T (~p− wa ~a− wb
~b− wc ~c)~nT dt =

(
â′t6

6
+
b̂′t5

5
+
ĉ′t4

4
+
d̂′t3

3
+
ê′t2

2
+ f̂ ′t)|t

i
b

tia
.

Analog to VF contact force, we can similarly derive the coefficients
of the degree six polynomial for EE contact force.

C Stability Analysis of 1D Particle-on-Plane
Contact

The (continuous) motion of a particle with massm under the action
of gravity and a penalty force with stiffness k centered at x = 0 is
described, through Newton’s 2nd Law, as:

mv̇ = −mg − k x. (22)

To analyze the stability of an integration method, we discretize the
equation above with a time step ∆t, discard the gravity force term,
and write an iterative update rule of the form(

x(t+ ∆t)
v(t+ ∆t)

)
= A

(
x(t)
v(t)

)
. (23)

The integration method is stable for time steps for which all eigen-
values ‖λ(A)‖ < 1.

With Symplectic Euler (SE), the velocity and position updates can
be written as

v(t+ ∆t) = v(t)−∆t
k

m
x(t), (24)

x(t+ ∆t) = x(t) + ∆t v(t+ ∆t). (25)

In the form of equation 23, the update rule is(
x(t+ ∆t)
v(t+ ∆t)

)
=

(
1−∆t2 k

m
∆t

−∆t k
m

1

)(
x(t)
v(t)

)
. (26)

And the eigenvalue analysis yields ∆t < 2
√

m
k

for stability.

With Continuous Penalty Forces (CPF), following the formulation
in Section 3.3 in the paper, we first predict the velocity at the end
of the time step, which in this case is simply v∗(t + ∆t) = v(t).
Then, we integrate the penalty force, and we obtain the following
average force:

F ∗ =
1

∆t

∫ ∆t

0

−k (x(t) + τ v(t)) dτ = −k x(t)−∆t
k

2
v(t).

(27)

The velocity and position updates with CPF can be written as

v(t+ ∆t) = v(t)−∆t
k

m
x(t)−∆t2

k

2m
v(t), (28)

x(t+ ∆t) = x(t) + ∆t v(t+ ∆t). (29)

In the form of equation 23, the update rule is(
x(t+ ∆t)
v(t+ ∆t)

)
=

(
1−∆t2 k

m
∆t−∆t3 k

2m

−∆t k
m

1−∆t2 k
2m

)(
x(t)
v(t)

)
.

(30)
And the eigenvalue analysis yields ∆t <

√
2m

k
for stability.


